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Abstract . Near Infra-Red Spectroscopy (NIRS) is a rapid and cost-effective method widely used 
for the determination of chemical composition of agricultural products. Reflectance spectra recorded in 
near infra-red region for a set of samples of known composition are used for establishing calibration 
model by use of one of standard multivariate calibration methods, like MLR (multiple linear regression), 
PCR (principal component regression) or PLS (partial least squares). Multivariate calibration is a task that 
can be tried to be solved with artificial neural networks (ANNs) as well. The present paper is aimed at 
assessing the applicability of artificial neural networks as a tool for the determination of the content of 
main nutritional components of rapeseed meal: protein, dry mass, fibre and oil, on the basis of NIRS 
measurements. To the knowledge of the authors, no paper has been published on modelling of the 
dependence of chemical composition of rapeseed meal and NIR spectra with ANNs. Two most popular 
types of ANNs are tried in this work: multi-layer perceptron (MLP) and radial basis function (RBF). The 
obtained results show that chosen types of ANNs can provide models of performance comparable to that 
characterizing models built with MLR.  
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INTRODUCTION 

For many years one can observe wider and wider use of Near Infra-Red 
Spectroscopy (NIRS) in the determination of chemical composition of agricultural 
products, food, food components and beverages. The reasons behind this tendency 
are numerous and well known [11,20]. The main of them can be summarised 
under the headline cost-effectiveness. Over decades, two streams in the develop-
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ment and improvement of NIRS applications can be clearly seen: progress in 
instrumentation and progress in processing the results of measurements. Efforts 
within the latter stream, if directed towards extraction of chemical information, are 
well known as chemometrics. Chemometrics is closely related to many other 
branches of science oriented on the interpretation of real-world data, like applied 
statistics, artificial intelligence, and some others. As a consequence, chemometrics is 
a vital branch that still absorbs new ideas and methods. This can be also seen within 
the applications of NIRS in compositional analysis of food and food-related products. 
In particular, the potential of Artificial Neural Networks (ANNs) as a tool for 
extraction of chemical information from NIR spectra is an example of more recent 
efforts in chemometrics. The standard approach in chemical characterization of food 
with NIRS is to use one of the methods elaborated for purposes of multivariate 
calibration, such as MLR, PCR or PLS. However, it is always worth to evaluate the 
potential of any other possibility in order to confront the quality of the results it 
provides with the results coming from more standard tools. The aim of the present 
contribution is to evaluate the virtue of application of ANN as compared to the results 
that can be obtained by means of traditional methods for multivariate calibration [7] 
within a specific task defined as determining the chemical composition of rapeseed 
meal from NIRS. Two types of popular feedforward ANNs were chosen, i.e. with 
multi-layer perceptrons (MLP), and radial basis functions (RBF). 

PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS 

For many years ANNs have attracted much attention of workers from various 
branches. Consequently, huge literature on the subject exists. General and exhaustive 
introductions to the subject can be found in numerous handbooks, for instance in 
[12,13,15]; herein just the foundations of the most popular types of ANNs are 
presented and followed with a more detailed description of the present application. 

Figure 1 depicts the architecture of a simple ANN consisting of elements 
displayed in three functional layers. From the left, there are ni inputs (in the input 
layer) transmitting ni signals to each of nh neurons in the so-called hidden layer. 
The last layer consists of a single element, i.e. a single neuron in the output layer. 
In general, the number of hidden layers can be arbitrary as well as the number of 
neurons, no, in the output layer. The latter typically is equal to the number of 
dependent variables, while ni – to the number of input variables. 

The scheme of the architecture shown in Figure 1 is common for the types of 
ANNs that have been decided to be applied in the present work, i.e. to the types 
where the signals are transmitted in one direction without any feed-backs. This 
type of ANNs is called feed-forward nets. Within this category one can find some 
differences, first of all referred to the way in which neurons in hidden layer(s) 
transform signals from their inputs to their outputs. From this point of view, one 
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can distinguish two popular cases: multilayer perceptron (MLP), and radial basis 
functions (RBF), both chosen to be tried in the present work. 

Training of the ANN relies on adaptation of the values of some parameters 
(weights and biases in MLP, or centroids and widths in RBF). As the number of 
parameters to be adapted increases with the number of neurons, then rich 
architectures need more numerous training sets. Since the total number of the 
measured rapeseed meal samples is not very numerous in the present case study, 
it is reasonable to limit the number of neurons and to construct ANNs specific to 
each of rapeseed meal constituents. 

The net has to be trained in order to model in a satisfactory (in light of certain 
criteria) way the dependence between input and output variables. This unknown 
dependence is embedded in the data, and training (learning) results in finding 
a set of parameters of the net that enable the net to approximate the relationship 
between the inputs and outputs. 

Multilayer perceptron (MLP)  

Multilayer perceptron together with error back-propagation learning rule used 
in modelling of the dependency between input and output sets of variables create 
the most popular approach within applications of ANNs. Properties of this type of 
ANN are determined by the way in which particular neurons process their input 
signals into output signals. A single neuron participation in this processing can be 
schematically depicted as in Figure 2, and explained in several points: 

- each neuron accepts input signals xi and generates its output signal y, 
- each input has its weight, wi, which ascribes the importance to the infor-

mation coming from the input, 
- each neuron has its bias (threshold value), w0, which influences the 

intrinsic activation of the neuron, 

- intrinsic activation of the neuron, s, equals to ∑
=

+=
ni

i
ii wxws

1
0 , 

- the output is ( )sfy = , where f(.) is the transfer function of the neuron. 
The transfer function can be of different shapes, either linear or non-linear. The 
most popular is the sigmoidal transfer function, either in its uni- or bi-polar 
variant, given by the formula 

 0
exp1

1 >
−+

= λ,
λs)(

f(s)  (1) 

or 

 01
exp1

2 >−
−+

= λ,
λs)(

f(s)  (2) 

respectively. 



M. WRÓBEL et al. 

 

264

 
The output signal of the whole net, ŷ , to an input vector x, of MLP-ANN with ni 
input neurons, one hidden layer with nh neurons, and one output neuron is (cf. 
Figs. 1 and 2) 
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where of  and hf  are transfer functions of output and hidden neurons, respectively. 

Training of a net with MLP starts with setting initial values of the weights and 
biases, usually at random. As a consequence, these parameters in the trained net 
may be not the same when the training is repeated. 
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Fig. 1. The architecture of ANNs used in this work 

Fig. 2. Neuron model in MLP type nets 
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Radial basis function (RBF) 

This category of ANNs uses transfer functions of radial shape, often Gaussian, 
adopted to each hidden neuron. Gaussian radial function for the i-th hidden 
neuron can be written as 

 ( )
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where x is the vector of input variables, ci and σi are the centroid and the width of 
the function, respectively. RBF-ANNs usually contain a single hidden layer, and 
the weights between the input and the hidden layers are set to unity. The output 
signal (cf. Fig. 1) is calculated as a weighted sum of the radial basis functions 

 ( )∑
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where nh is the number of hidden neurons, wi is the i-th weight between hidden 
and output layers. 

RBFs are known to allow modelling of non-linear dependencies with a linear 
approach, which ensures optimal weights for signals between hidden and output 
layers to be set for a given training set and architecture [9,19]. This means that 
after training the net reaches the same parameters for the same training data. 

By comparison of equations (3) and (5) one can see that radial functions act 
locally because their significant values occur close to ci only, while with 
increasing distance icx −  they fall rapidly. In MLP-ANN transfer functions act 

globally, because all the components of x influence the intrinsic activation of the 
neuron proportionally to the values of suitable weights. Hence, in nets with MLP 
processing of x with sigmoidal transfer function has a global character [12]. 

Modelling 

Typical tasks that appear when using ANN refer to: (i) pre-preparation of the 
data (see next section) and (ii) the size of the data set. Large enough data sets 
being available is the most desired situation, however very often the sets are not 
numerous enough to be simply split into training and prediction subsets that are 
needed to perform training (modelling) of the net and evaluation of the result. 
Details of the problems are extensively discussed in the literature (see, e.g. [4]). 

A large data set characterizes the modelled dependence more accurately and 
in more details. Moreover, such a set can be split into calibration and external test 
subsets at random, making the subsets likely independent. The latter property is 
not fulfilled when less numerous data set is split, since splitting needs special 
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algorithms to ensure statistical similarity of both subsets. Because the number of 
samples was not large (NTOT = 69), duplex algorithm for splitting [16,17] was used 
and calibration subset of NC = 50 samples and external test subset of NTEST = 19 
were formed. As the calibration set is not large enough, the so-called Monte Carlo 
cross-validation procedure [1] can be used in training of the net. This procedure 
selects a part of the calibration set as a training set and uses the remaining part as 
an internal test set and monitoring set. The latter set stops learning algorithm (so-
called early stopping procedure [1,2] was used), then partial error RMSECV is 
calculated for the internal test set. This sequence is repeated 30 – 50 times, then 
total RMSECV is assumed as the mean of the errors obtained for all internal test 
sets. Finally, the net is tested on external test set in order to calculate RMSEP (see 
Tab. 1). In this work the training set included NTR = 40 samples, the monitoring 
and internal test set NMON = NCV = 5 samples, and the number of splits of training 
set equals NMC = 50. The Levenberg-Marquardt optimization method [2,5] was 
applied for setting weights in all learnings. Performance parameters used for the 
assessment of the models are listed and explained in the table below. 

Table 1. Parameters chosen for assessment of performance of models 

 

Name of performance index Formula 
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RER 
ratio of the range to the standard 

error of prediction RMSEP
RER minmax yy −

=  

i
ŷ  is the value of concentration of constituent for sample i predicted by the model from the 

spectrum, and yi is the value of concentration of constituent for sample i determined with the 
reference method. 
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For RBF-ANN, a frequently used approach is the regularization procedure [9] 
which results both in stabilization of the training process and avoiding of 
overtraining. In the present work, the so-called local ridge regression method was 
chosen for this purpose. Additionally, the forward selection procedure was used 
for establishing the optimal number (nh) of neurons in the hidden layer. The 
coordinates of objects from the calibration set were the possible centres (ci) and σi 
was common for all radial functions. Training of RBF-ANN does not need 
calibration set to be split into subsets, hence RMSECV was not calculated. 

DATA AND DATA PRE-TREATMENT 

Data 

The set of data consisted of 69 reflectance near infrared spectra recorded for 69 
rapeseed meal samples of chemical composition determined with approved chemical 
methods [8] (for more details see accompanying paper [7]). Determining chemical 
composition of the samples from NIR measurements, i.e. contents of four compounds 
(protein, dry mass, fibre and oil), was the goal of modelling with ANNs. 

Data pre-treatment 

Multiple scatter correction (MSC): The MSC is the most commonly used pre-
treatment of NIR reflectance spectra aimed at reducing multiple scattering effect 
present when measurements come from granular samples [6]. MSC is performed 
on subsets of original spectra selected for calibration and for external test sets. 
The spectra of external test sets are MSC transformed by use of the mean 
spectrum obtained from the MSC of the calibration set. 

Selection of input variables: The number of wavelengths in the spectra is 
equal to 700, and it is too large for direct use of all of them as input variables for 
ANN. Therefore, a reduction of the number of input variables to a subset of 
reasonable size, e.g. to some tens, is needed. With this aim, the so-called CVU 
method, recently proposed for wavelength selection in multivariate calibration 
[14], has been applied. 

Scaling of input variables: This step is necessary in order to avoid the 
situation when a large change in neuron intrinsic activation, s, can result in a low 
change of its output because of saturation in transfer function (details on scaling 
can be found in [4]). In this paper the input variables xi were scaled (after 
centring) to the range of (-1,1), i.e. to the quasi-linear range of non-linear transfer 
function. Scaling of the data from the external test set used the scaling parameters 
determined on the calibration set. Since transfer function processes signal s de-
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pendent also on weights, it is recommended to chose initial weights with a special 
method, e.g., the Nguyen-Widrow method [5,18]. Also output signals (reference 
data) have to be scaled. When the transfer function of output neurons is non-
linear, the range recommended for scaling is 0.2 to 0.8, while linear functions 
usually make scaling not necessary, although in some cases scaling is recommen-
ded as well [4]. In this paper the reference data (contents of constituents) were not 
range scaled. For RBF-ANN results of scaling and centring of the input data can 
be effectively replaced with a suitable choice of centroids and widths in the 
transfer functions. 

COMPUTATIONS AND RESULTS 

Computer simulations of NN were performed with Neural Network toolbox - 
Matlab 6.5 package [2]. Splitting of the data was performed with the Calibration 
toolbox [17]. Building calibration models by means of RBF was carried out with 
Matlab Routines for Linear Neural Network toolbox [10]. Remaining calculations 
were made with software developed by the authors. 

The first task for MLP-ANNs was to determine the optimum architecture. For 
a given number of hidden neurons, changed steeply between 2 and 10, the 
numbers of neurons in the input layer (between 2 and 10) were tested. For each 
architecture, calibration was performed fivefold, then the mean and standard 
deviation of the performance parameters of the obtained models were calculated. 
The transfer functions used in the hidden layer were uni-polar sigmoid (eqn. 1) 
and the transfer functions in the output layer were linear. In the RBF-ANNs the 
value of σi was determined by optimisation of the models obtained for 

{ }10 ..., 3, 2,∈ni  while σi changed between 0.02 to 2 with step of 0.02. The calibra-
tion and external test sets were the same as those used for MLP. 

Mean values and standard deviations of performance parameters of the 
models obtained for five series of trainings (mean values for protein were 
calculated for four trainings only since in one training the result was far from the 
remaining ones) are listed in Table 2. Parameters obtained for fibre were less 
reproducible both for MLP and RBF (see Tab. 3). The most important parameter 
is RER (see Tab. 1) as it shows the relation between errors of the model and the 
range for content of the constituent. Comparison of this parameter for both types 
of networks does not show noticeable differences, except for oil, where RBF 
gives a considerably better (larger) value. 

Optimal size of MPL nets were low, especially in the hidden layer where 2 or 
3 neurons only were necessary. The number of inputs was the greatest for the 
modelling of protein and oil, however 10 and 7 inputs, respectively, are not very 
high. It is worth pointing out that for dry mass and fibre only 2 inputs were needed 
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(i.e. only 2 wavelengths) in order to obtain quite satisfactory models. Comparison of 
the architectures for MPL and RBF nets shows considerably greater number of 
neurons in the hidden layer. This can be expected because of general properties of this 
type of ANN [3]. One can also see that the number of inputs in RBF weakly depends 
on modelled constituent and ranges between 6 and 8. 

Table 2. Mean values and standard deviations of performance parameters for models from MLP-ANN 
 

Model R2 RMSEC 
(%) 

RMSECV 
(%) 

RMSEP 
(%) 

RER Consti-
tuent 

ni-nh-no 

Set 
mean std. mean std. mean std. mean std. mean std. 

cal. 0.89 0.01 
protein 10-2-1 

test 0.86 0.02 
0.94 0.03 1.00 0.04 0.95 0.05 10.8 0.6 

cal. 0.95 0.00 
dry mass 2-2-1 

test 0.96 0.00 
0.26 0.01 0.29 0.01 0.32 0.01 23.7 0.5 

cal. 0.84 0.00 
fibre 2-3-1 

test 0.78 0.02 
0.84 0.06 1.01 0.16 0.88 0.05 10.1 0.5 

cal. 0.98 0.00 
oil 7-3-1 

test 0.96 0.00 
0.16 0.01 0.18 0.01 0.35 0.02 24.4 1.6 

Table 3. Performance parameters for models from RBF-ANN 
 

Model R2 

Constituent 
ni-nh-no cal. test 

RMSEC (%) RMSEP (%) RER 

protein 8-7-1 0.86 0.85 0.94 0.97 10.5 

dry mass 7-3-1 0.93 0.95 0.29 0.36 20.8 

fibre 7-15-1 0.97 0.86 0.34 0.71 12.5 

oil 6-10-1 0.98 0.98 0.16 0.23 36.6 

 
Parameters of the models obtained with both types of ANNs are similar to the 

results obtained with MLR (Tab. 4). One can see from the above table that fibre and 
oil need considerably greater numbers of wavelengths to be involved in MLR models 
than when neural networks are used for 
modelling. The best modelling consti-
tuent with all methods of modelling 
considered in the present work is oil. 
Very satisfactory models could be ob-
tained also for dry mass, while remain-
ning constituents provided noticeably 
less valuable models, although still 
acceptable for purposes of quality 
control. 

Table 4. Results of MLR method (from ref. [8]) 

Constituent R2 RER 
No. of 

wavelengths 

protein 0.82 9.4 9 

dry mass 0.92 21.2 4 

fibre 0.88 13.0 15 

oil 0.98 42.2 11 
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CONCLUSIONS 

Comparison of the models provided by two types of networks shows that 
MLP-ANNs need simpler architecture. An exceptionally low number of input 
variables is necessary when dry mass and fibre are modelled. RBF-ANNs are 
more extended, especially in the hidden layer. On the other hand, for the case of 
oil, this type of net provided a model of very good performance. Therefore, the 
obtained results do not indicate any clear advantage of any one type of ANN. 

Comparison of the results of ANNs and MLR shows the models are similar, 
with the exception of oil, where RER from MLR is considerably better. However, 
the number of wavelengths needed in MLR tends to exceed the number of inputs 
in MLP-ANNs, like in the case of RBF-ANNs.  

To conclude, although the presented results for modelling of the content of 
four compounds in rapeseed meal from NIRS are preliminary, they show that 
calibration models that can be obtained from linear multivariate calibration are of 
better performance compared to the results from ANNs. There can be several 
reasons for this situation: 

- not large enough sets of data, 
- not optimal choice of the methods for both input variables selection and 

scaling of the output signal, 
- common widths in transfer functions for RBF-ANNs. 

Suitable modifications made according to the points listed above can be expected 
to result in improvement of the ANN’s models. 
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SZTUCZNE SIECI NEURONOWE W ANALIZIE SKŁADNIKOWEJ ŚRUTY 
RZEPAKOWEJ NA PODSTAWIE NIRS – MOśLIWOŚCI ZASTOSOWAŃ 
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Streszczenie. Spektroskopia w bliskiej podczerwieni (NIRS) jest szybką i wydajną metodą, 
szeroko wykorzystywaną do określania składu chemicznego produktów rolniczych. Widma odbi-
ciowe zarejestrowane w obszarze bliskiej podczerwieni dla zbioru próbek o znanym składzie 
wykorzystuje się do ustalenia modelu kalibracyjnego przy uŜyciu standardowych metod wielo-
wymiarowej kalibracji, takich jak MLR, PCR lub PLS. Wielowymiarowa kalibracja jest zadaniem, 
które moŜe być równieŜ rozwiązane przez sztuczne sieci neuronowe (ANNs). Celem tej pracy jest 
ocena moŜliwości zastosowań sztucznych sieci neuronowych jako narzędzia do określania 
zawartości głównych składników odŜywczych śruty rzepakowej: białka, suchej masy, włókna 
i tłuszczu na podstawie pomiarów NIRS. Według wiedzy autorów w literaturze nie są znane prace 
na temat modelowania zaleŜności składu chemicznego śruty rzepakowej na podstawie widm NIR 
przez ANNs. W pracy zastosowano dwa najpopularniejsze typy sztucznych sieci neuronowych: 
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perceptron wielowarstwowy (MLP) i sieć z radialnymi funkcjami bazowymi (RBF). Otrzymano 
rezultaty w postaci modeli, których jakość jest porównywalna z jakością modeli moŜliwych do 
uzyskania za pomocą MLR. 

Słowa k luczowe: śruta rzepakowa, sztuczne sieci neuronowe, spektroskopia w bliskiej 
podczerwieni 


